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Poly(c-leucine) is one of the poly(amino acids) having a bulky hydrophobic side chain. For want of full 
phonon dispersion curves and density-of-states on this biopolymer Roles et al. have interpreted their heat 
capacity data in a limited way. In the present paper, we report the Fourier transform infra-red (FTi.r.) 
spectra and an analysis of the normal modes and their dispersion based on the calculations for an infinite 
chain and Urey Bradley force field with intrachain interactions only. The results thus obtained agree well 
with our FTi.r .  spectra and the Raman frequencies reported by Koenig et al. Several earlier assignments 
have been revised. A special feature of some dispersion curves is their tendency to bunch in the 
neighbourhood of the helix angle. This has been attributed to the presence of strong intramolecular coupling 
between different types of motions. Repulsion between the dispersion curves is also observed. The heat 
capacity obtained from the dispersion curves via density-of-states is in very good agreement with the 
experimental measurements beyond 220 K. It is observed that the main contribution to heat capacity comes 
from the modes involving the coupling of the backbone skeletal and side-chain motions. Copyright © 1996 
Elsevier Science Ltd. 

(Keywords: conformation; phonon dispersion; s -he l ix )  

I N T R O D U C T I O N  

In an earlier publication the authors have reported a 
study of  phonon dispersion and heat capacity in poly(c~-  

1 aminoisobutyric acid) . In continuation of  our work on 
vibrational dynamics of  biopolymeric systems having 
~, /3, ~ and 310 helical conformation 1 11, we report 
for poly(e-leucine) (PLL), full dispersion curves, density- 
of-states and heat capacity data which are found to be 
in good agreement with the experimental measurements 
Wunderlich and Bu12, Bu et  al.13, Roles and 
Wunderlich 14 and Roles et al. 15 have reported experi- 
mental and theoretical studies of  heat capacities of  a 
variety of  polymeric systems, synthetic as well as 
biopolymeric. In most cases, their analysis is based on 
separation of  the vibrational spectrum into group and 
skeletal vibrations. The former are taken from computa-  
tions fitted to i.r. and Raman  data and the latter by using 
the two-parameter  Tarasov model 12 and fitting to low 
temperature heat capacities. However, in a few cases, 
where detailed dispersion curves of  the vibrational 

2 6 spectrum are a v a i l a b l e - ,  they have been used for 
obtaining group and skeletal vibrations and the number 
of  vibrators of  each type. In some cases, dispersion 
curves for one polymeric system have been used to obtain 
the number  of  vibrators and frequencies of  box oscil- 
lators for polymers with an identical backbone. This 
approach is satisfactory when full dispersion curves 
are not available. However, it has its own limitations, 
especially when the side-chain and back-bone modes are 
strongly coupled. Vibrational spectroscopy is an 
important  tool for probing conformation and confor- 
mationally sensitive modes of  a polymer. In general, the 

* T o  w h o m  c o r r e s p o n d e n c e  s h o u l d  be a d d r e s s e d  

infra-red absorption, Raman spectra and inelastic 
neutron scattering from polymeric systems are very 
complex and cannot be unravelled without the full 
knowledge of  dispersion curves. One cannot appreciate 
without it the origin of  both symmetry dependent and 
symmetry independent spectral features. Further, the 
presence of  regions of  high density-of-states, which 
appear  in all these techniques and play an important  
role in thermodynamical  behaviour, are also dependent 
on the profile of  the dispersion curves. The lack of this 
information in many polymeric systems has been 
responsible for incomplete understanding of  polymeric 
spectra. The advent of  lasers and fast computers has 
eased these problems to a large extent. Dispersion curves 
also provide information on the extent of  coupling along 
the chain together with an understanding of the depend- 
ence of  the frequency of  a given mode upon the sequence 
length of  the ordered conformation.  Thus the study of 
phonon dispersion in polymeric systems continues to be 
important.  

Poly(c-leucine) (Figure 1 )  belongs to the class of  
poly(amino acids) having bulky hydrophobic side- 
chains. In solid state PLL adopts an c~ helical con- 
formation and molecular models demonstrate that the 
formation of  an c~ helix reduces the side-chain to side- 
chain steric interference 16. Infra-red and Raman  spectro- 
scopic studies of  PLL have been reported by Koenig and 

17 1-8 19 Sutton , Frushour and Koenig , I toh et al. and 
Shotts and Sievers 2°. Their assignments are both 
incomplete and based on qualitative considerations. It 
is, therefore, all the more important  to carry out a 
complete normal  mode analysis and their dispersion for 
PLL. Both the i.r. and Raman  frequencies reported by 
these authors have been compared with our Fourier 
transform infra-red (FTi.r.) spectra and calculated 
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Figure 1 Chemical repeat unit of poly(L-leucine) 
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frequencies. The second derivative spectra obtained by 
us provide an edge over others both in assignment and 
positions. It is through the dispersion curves that one can 
correlate microscopic behaviour of  a crystal with its 
macroscopic properties such as specific heat. 

T H E O R Y  A N D  E X P E R I M E N T  

Calculation of normal modes 
The calculation of normal mode frequencies has been 

carried out accordinj~ to Wilson's GF Matrix method 21 as 
modified by Higgs ~ for an infinite chain using Urey 
Bradley-Shimanouchi force field which takes into account 
non-bonded interactions. The Wilson GF matrix method 
consists of writing the inverse kinetic energy matrix G and 
the potential energy matrix F in internal coordinates R. In 
the case of  an infinite isolated helical polymer, there are an 
infinite number of internal coordinates which lead to G and 
F matrices of infinite order. Due to the screw symmetry of 
the polymer a transformation similar to that given by Born 
and Von Karman can be performed which reduces the 
infinite problem to finite dimensions. The transformation 
consists of defining a set of symmetry coordinates: 

S(iS) = ~ Rnexp(is6) (l) 
S = --~0 

where 6 is the vibrational phase difference between the 
corresponding modes of the adjacent residue units. 

The elements of the G((5) and F(~51 matrices have the form: 

Gik(b" ) = ~ GSk exp(is~5) (2) 
S ~ - - D C  

Fik(6) = ~ FiE exp(is~5) (3) 
S z 7x2, 

~0,00T , 
1600 

b MAX-IO0.O0 T 

MIN=O-00T 
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Study of poly(L- leucine): S. Srivasta va et a I. 
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Figure 2 (a) FTi.r. spectra of poly(L-leucine) (1700 450cm l). Inset shows the region 3500 2750cm 1.  (b) FTi.r. spectra of poly(L-leucine) (465 
150cm l) 
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The vibrational secular equation which gives normal 
mode frequencies and their dispersion as a function of 
phase angles has the form: 

IG(6)F(6) - A(~)I I = 0, 0 < 6 < ~r (4) 

The vibration frequencies u(~5) (in cm -1) are related to 
eigenvalues A(~) by the following relation: 

A(6) = 47r2c2~'2(6) (5) 

For any given phase difference 6 (other than 0 or ~r), 
the G(6) and F(~5) matrices are complex. In order to 
avoid the difficulties involved in handling complex 
numbers, methods have been devised to transform the 
complex matrices into equivalent real matrices by 
constructing suitable linear combinations of  coordinates. 
One method of transforming a complex matrix to its real 
matrix equivalent is through a similarity transformation. 
It can be shown that any complex matrix H = M + iN 
can be replaced by the real ones: 

M - N  
N M 

In the present case, we can write G(~) = GR(~)+iGI(~5) 
and F(6) .= FR(6)+  iFI(6), where GR(6), FR(~5), G~(6), 
Fl(g) are the real and imaginary parts of  G(~) and 
F(6).  The product H(6)  = G(~)F(8) becomes: 

= 

= 

where 

GR(6) -GI (6 )  

GI(6) GR(¢5) 

H R ( ~ )  - H I ( ~ )  

HI ((5) HR(6) 

FR(6) 
X 

F'(6) 
-F ' (6)  
FR(6) 

(6) 

HR(6) = GR(6)FR(6) -- GI(~)FI(~) (7) 

HI(6) = GR(~)F[(6) + GI(6)FR(6) (8) 

The matrix H(g) now has dimensions 2N × 2N. The 
eigenvalues, therefore, occur in pairs of equal values. The 
difficulty of dealing with complex numbers is thus avoided. 

In the present work, the Urey Bradley force field has 
been used which takes into account both bonded and 
non-bonded interactions as well as internal torsions. The 
potential energy can be written as 

V = Z Kj'krS"k)(Ar~ "~)) + Kjk(Ar5 ~'))2/2 
m,j,k 

+ Z H:jkr}7)4Z)(A~I;2 ) 
m, i,j, k 
~r (m) (m) eA (m)x2,,.~ 

-Jr-Hijkrij rjk ~/..~O[ijk) /Z  

+ ~ E.! ~(m) gA~(m)~ (m) 2 
• ikvik ~ q i e  ~+ Fie(Aqik ) /2 

rn,i,j,k 

+ Z Kf (A~))2 + Z Ky(Awj )2 (9) 
J J 

where the symbols have their usual meaning. The primed 
quantities are introduced as internal tensions. Non- 
bonded interactions involve attraction and repulsion of  
atoms due to the overlap of their electron shells. These 
effects are usually expressed by the 6-exp or 6-12 type 
potentials. The tension terms are assumed to be all zero. 

Table 1 Internal coordinates and Urey Bradley force constants 
(md A)~ 

Internal Force Internal Force 
coordinates constants coordinates constants 

u(N Ca) 2 .850 4~(Ca-C¢3 C-y) 0.550(0.18) 
u(Ca - Ha) 4.250 qS(Cfl C~ C6I) 0.515(0.18) 
u(Ca C) 2 .700 ~(C~C 7 C62) 0.515(0.18) 
u(C=O) 8.300 0(C~-C7 HT) 0.523(0.22) 
u(C=N) 6.300 &(C6] C7 C 6 2 )  0.515(0.18) 
u(H-N) 5.390 0(C6]C7 HT) 0.500(0.22) 
u(Ca-C/3) 2.550 0(C62 C7 HT) h 0.500(0.22) 
u(H/3/3 Cfl) 4.250 0(C 7 C6~ H6]) b 0.445(0.21) 
u(H3a Cfl) 4 .250 0(C7-C62 H62) L 0.445(0.21) 
v(C/3 C7) 2.300 0(H61 C61 H6~) ° 0.421(0.24) 
v(CT-Ca2) 2.120 0(H62 C52 H62) b 0.421(0.24) 
u(C?-Cal) 2.120 0(Ca Cfl H / 3 a )  0.360(0.20) 
u(C'7 HT) 4 .340 0(CT-Cfl Hf l /3)  0.360(0.20) 
u(C6~-H6]) ~ 4.330 0(C~ C/3 H / 3 a )  0.360(0.20) 
//(C62 H62) b 4.330 0(Ca Cfl-Hfl/3) 0.360(0.20) 

O(HI3f3 C/3- Hfla) 0.422(0.25) 
w(C=O) 0.540 4~(N Ca-Ha) 0.320(0.80) 
w(N-H) 0.120 0(N-Ca C/3) 0.450(0.50) 

0(Ha Ca C) 0.410(0.20) 
r(C-Ca) 0 .010 0(Ha-Ca C/3) 0.410(0.20) 
r(Ca Cfl) 0.050 0(C Ca Cfl) 0.520(0.18) 
r(C/3 C7) 0.080 0(N Ca-C) 0.130(0.50) 
r(C'7 C61) 0 .016 0(C=N--Ca) 0.530(0.35) 
r(C7-C62) 0 .016 ¢(N=C--O) 0.600(0.90) 
r(C-N) 0.030 ¢(C-N H) 0.200(0.65) 
r(N Ca) 0.010 0(S N Ca) 0.427(0.60) 

~(Ca C=O) 0.230(0.60) 
0(Ca C=N) 0.210(0.60) 

a u, ~b,w, r denote stretch, angle bend, wag and torsion respectively. 
Stretching force constants between the non-bonded atoms in each 
angular triplet (gem configuration) are given in parentheses. 
b Because of the indistinguishability of methyl hydrogens each internal 
coordinate represents three internal coordinates. The total number of 
internal coordinates is thus equal to 52 + (6 x 2) = 64. The number of 
force constants including the non-bonded ones would thus become 
6 4 + ( 2 8 + 2 x 4 ) = 1 0 0  

Force constant evaluation 
The force constants have been obtained by least 

squares fitting. In order to obtain the 'best fit' with the 
observed frequencies the following procedure is adopted. 
Initially approximate force constants for backbone are 

a 1400 
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Figure 3 (a) Dispersion curves of pol~(L-leucine) (1400 900 cm-l). (b) 
Density-of-states g(u) (1400-900cm ) 
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transferred from ~ poly(L-alanine) 9. Thus starting with 
the approximate F matrix F 0 and the observed frequen- 
cies Aobs (related through a constant), one can solve the 
secular matrix equation: 

GFoLo=LoAo (10) 

Let AAi = Aiob s -- A/0 in the above equation. It can be 
shown that in the first order approximation; 

AA = J A F  (11) 

where J is computed from L0. We wish to compute the 
corrections to F0 so that the errors AA are minimized. 
We use the theory of  least squares and calculate 

J ' P A A  = ( J ' P J ) A F  (12) 

where P is a weighting matrix and J'  is the transposition 
of  J. The solution to this equation is obtained by 
inverting (J'PJ) to give: 

AF = ( j , p j ) - l j , p ~ - ~  (13) 

If the number of frequencies is greater than the number 
of  F matrix elements, the matrix J'PJ should be non- 
singular and we obtain the corrections A F  which will 
minimize the sum of the weighted squares of  the 
residuals. If the corrections AF are fairly large, the 
linear relation between force constant and frequency 
term in the matrix equation (10) breaks down. In such a 

Study of poly(L-leucine): S. Srivastava et al. 

situation, further refinement using higher order terms in 
the Taylor's series expansion of AAi is needed. This 
procedure has been developed by King et al. 23. 

The poly(L-leucine) (lot no. 81H5557, DP(vis)242, M w 
274000) was purchased from Sigma Chemicals, USA. 
The FTi.r. spectra (3000-150cm l) were recorded in 
CSI on a Perkin-Elmer 1800 spectrophotometer and are 
shown in Figure 2. Before running the spectra the 
equipment was well purged with dry nitrogen. 

Calculation o f  heat capacity 

One of the important uses of dispersion curves is that 
the microscopic behaviour of a crystal can be correlated 
with its macroscopic properties such as heat capacity. 
For a one-dimensional system the density-of-states 
function or the frequency distribution function, which 
expresses the way energy is distributed among the 
various branches of normal modes in the crystal, is 
calculated from the relation: 

g(u) = ~(Ou]/O6)-']u](6) = u (14) 

J 

The sum is over all branches j. Considering a solid as an 
assembly of harmonic oscillators, the frequency distribu- 
tion g(u) is equivalent to a partition function. It can be 
used to compute thermodynamic quantities such as free 
energy, entropy, heat capacity and enthalpy 24. The 
constant volume heat capacity is obtained using the 
following relation which is based on Born, Von Karman 

Table 3 Pure side-chain modes (all frequencies are in cm 1) 

Calcd. Obs. Assignment (% PED at 6 = 0.0) 

2963 2960 
2957 
2938 2938 
2918 2916 
2917 
2915 2918 
2910 
2910 
2906 2904 
2876 2874 
1466 1471 
1465 
1452 1454 
1452 
1444 1441 
1393 1390 
1380 1370 
1351 1350 
1333 1334 
1038 1040 
1014 1020 
977 980 
931 925 
842 833 
830 
328 323 
282 283 

u(Cc~ H~)(99) 
u(C6, H61)(99 ) 
u(C62 H62)(98) 
u(Cq~-HT) (24) + u(C61-H61)(73) 
u(C61 H61)(98) 
u(C7 H~/)(65) + u(C6,-H6, )(28) 

u(C62-H62)(98) 
u(C62 H62)(96) 
u(Hfl~ Cfl)(47) + u(Hflfl Cfi)(48) 
u(Hflfl Cfl)(49) + u(Hfla Cfl)(50) 
O(H6rC61 H6J(92) + 4(C'7-C6j H61)(6) 
0(H61 C6~-H61)(94 ) 
0(H62 C62 H62)(90)+0(C7 C62 H62)(5) 
0(H62- C62 H62)(93) 
~(Hflc~ Cfl Hfifl)(76) 
0(C~ Ct]I H61)(49) + 0(H61 C6rH61)(45) 
0(C7-C62 H62)(48)+ ~(H62 C62 H62)(45) 
0(C62 C7 H"/)(49) +O(H7 C7 C61)(24) 
0(Cfl C7 H7)(47) + 0(H~/ C~C61 (25) 
0(C 7 Cd, H6,)(30) + ~(C7 C62 H62)(22) + u(Cfl C7)(1 1) + u(C 7 -  C62)(5 ) + 0(C62 C7-C61)(6 ) 
~(C7 C61 H6,)(41)+0(C7 C62 H62)(29) 
0(C7 C62 H~2)(28)+ 0(C'y C61 H61)(23)+ u(C7 C6,)(10)+ u(C7 C62)(7)+ ~(Cc~ Cfl H/3c~)(6)+ 6(Cc~ Cfl-Hfla)(5) 
~(C7-C62 H62)(44) + 0(C7 C61 H6j(38) 
u(C~C7)(35) + O(C3, C62 H62)(25) + 0(C 7 - C61 H6,)(11) +/y(C"),-C~ 1 )(13) 
u(C 7 C6J(30) + u(Cq, C61)(20 ) + ~(C~C61 H6,)(12) + 4(Hflc~ C/%C7)(7) + 0(C3,-C62 H62)(7) + r(Ca Cfl)(6) 
0(C61 C7-C62)(64 ) + q~(Cfi-C"/ C6,)(8) 
r(C3, C62)(49)+T(C 7 C61)48) 
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Study of poly(L-leucine): S. Srivastava et al. 

and Debye's  approach: 

Cv = Z g ( u j ) k N A ( h u j / k T )  2 exp (hu j / kT)  (15) 
[ e x p ( h u j / k T ) -  1] 2 J 

with 

I g(uj)duj = 1 

The constant volume heat capacity Cv, given by equation 
(15) is converted into constant pressure heat capacity Cp 
using the Nerns t -L indemann  approximation25: 

Cp - Cv = 3RAo(C2T/CvT°m) (16) 

where A 0 is a constant often of a universal value 
[3.9 x 10-3KmolJ -1 ] ,  and T ° is the estimated equili- 
brium melting temperature, which is taken to be 573 K ~5. 
Equation (16) has been tested for several biopolymers 
with side groups ranging from hydrogen in polyglycine 
to - C H 2 - C 6 H 4  OH in poly(e-tyrosine). 

RESULTS A N D  DISCUSSION 

Poly(L-leucine) in c~ helical form has a factor group 
which is isomorphous with the Cls point group. There 
are 19 atoms per residue unit which give rise to 57 
dispersion curves. The force constants (100) which gave 
best fit to the experimental data along with the internal 
coordinates (64) are given in Table 1. The number of  
normal modes is always less than the number  of  internal 
coordinates because of several redundancies. The sig- 
nificant contribution from a force constant is taken to be 
5%. Thus a 'pure '  backbone mode in general would 
involve small but appreciable motion in the side-chains. 
The vibrational frequencies were calculated for values of  
6 ranging from 0 to 7r in steps of  0.057r. Assuming that 0 
is the angle of  rotation about  the helix axis which 
separates the adjacent units, the modes corresponding to 
6 = 0 (A species) and 0 (El species) are infra-red as well 
as Raman  active and ~ = 20 (E2 species) gives only 
Raman  active modes. The calculated frequencies at 

= 0, 57r/9 and 107r/9 are compared with the observed 
ones. These modes are shown by the points of  intersec- 
tion of the vertical lines with the dispersion curves. The 
modes at 6 = 107r/9 are identical with the modes at 87r/9. 
Considering the one-dimensional unit cell, it has 19 × 5 
atoms and (95 x 3 - 4) = 281 normal modes which are 
distributed in various symmetry species as 55(A)+ 
56 x 2(El) + 57 × 2(E2). The E species are doubly 
degenerate. 

Since the modes above 1350 cm -l  (except amide II) are 
non-dispersive, only the modes below this are shown in 
Figure 3. Two lowest lying branches (~5 = 0 and ~5 = 57r/9, 
v = 0) contain the four zero frequency modes which 
correspond to the rotation about  the helix axis and the 
translations 11 and two ± to the helix axis. The two zeros 
at ~5--0 correspond to translation along and rotation 
about  the helix axis, while the doubly degenerate zero at 
6 = 57r/9 corresponds to translations in two directions 
perpendicular to the helical axis. The assignments of  
modes are made on the basis of  potential energy 
distribution (PED), line intensity, line profile, second 
derivative spectra and the presence/absence of  modes in 
molecules having atoms placed in similar environments. 

For  the sake of simplicity the modes are discussed under 
two separate headings, normally backbone modes and 
side-chain modes. 

Backbone modes 
The main-chain of PLL consists of  amide groups 

joined together by Cc~ atoms. Modes involving the 
motions of  main-chain atoms ( - C  Cc~-N-)  are termed 
backbone modes. Pure backbone modes are given in 
Table 2 and pure side-chain modes in Table 3. The modes 
involving the coupling of  backbone and side-chain are 
given in Table 4. All the amide modes except amide A 
and amide I are dispersive. A comparison of various 
amide modes of ct PLL and c~ poly(L-alanine) 3 is given in 
Table 5. Amide I, II  and I l l  modes fall nearly in the same 
region. It is clear that the frequency of amide V mode 
does not depend solely on main-chain conformation but 
the side-chain structure also plays an important  role in 
determining the frequency of this mode. The frequency 
of CO-in-plane-bend (amide IV), CO-out-of-plane bend 
(amide VI) and C N torsion (amide VII) are also 
Conformation dependent 26. These modes mix strongly 
and very differently with the side-chain coordinates 
depending on the structure of  the main and side-chains. 
In the spectra of  PLL three bands have been observed at 
614, 656 and 703cm -l .  According to Koenig and 
Sutton 17 these bands are due to amide V in c~, disordered 
and ,3 sheet conformations respectively. The presence of 
all these modes in the spectra of  PLL is said to be 
indicative of  the coexistence of different conformational 
states. This does not appear to be correct. In ~ poly(L- 
alanine) 3 the 656 cm -l  band has been assigned to amide 
VI which is calculated in PLL at 647 cm-  . Amide V is 
calculated at 592cm -1 at ~ = 0. On increasing the value 
of 6 contribution of C = O  wag increases and at the zone 
boundary it becomes a mixture of  amide V and amide VI. 
The 703 cm l band is a mixture of  side-chain stretches 
and ~(N--H). Our assignments are further supported by 
the fact that these three bands are observed in poly(L-~- 
amino-n-butyric acid), poly(L-norvaline) and poly(L- 
norleucine) in c~ form and on N-deuteration the 703 
and 656cm I bands do not change appreciably in 
intensities and frequencies l°. Only the band near 
610cm -~ shifts to about  450cm -l because it is due to 
amide V. One of the interesting features observed in the 
dispersion curves is the tendency of some curves to bunch 
or close in near the helix angle. In this range of ~ the 
modes involve strong coupling of different types of  
atomic motions. This phenomenon is observed in amide 
V and amide VI. Amide VI mode is most dispersive 

Table  5 C o m p a r i s o n  of  amide  modes  of  poly(L-leucine) and  poly(L- 
a lanine)  (all frequencies are in cm L) 

Poly(L-leucine) Poly(L-alanine) 

6 - 0.0 6 - 5~r/9 (5 - 0.0 (5 - 57c/9 

A m i d e  A 3313 3313 3293 3293 
A m i d e  I 1657 1657 1659 1659 
Amide  II  1546 1518 1515 1540 
A m i d e  I I |  1299 1318 1270 1274 
A m i d e  IV 587 633 525 440 
Amide  V 587 617 595 610 
A m i d e  VI 656 633 685 656 
A m i d e  VII  227 171 238 190 
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(23 cm-l) .  It has 25% contribution from w(C=O). With 
increase in /5, the energy of this mode and the 
contribution of  w(C=O) decrease whereas ~ ( O = C = N )  
and w(N-H) start mixing. At/5 = ~ it becomes a mixture 
of amide IV and V. This characteristic feature has also 
been noticed in ~ poly(L-alanine) 9 and poly(c~-amino- 
isobutyric acid) 1 (310 helix) and can be attributed to 
strong intramolecular interactions stabilizing the helical 
structure. The dispersion curves of polyglycine II and 
other /3  sheet samples do not show this feature 4'5. The 
observed peak at 227 cm -1 has been assigned to amide 
VII and this mode has a lower value at /5 = 57r/9 in 
comparison to /5 = 0. The PED of this mode shows 
considerable mixing with C~ N and Ca C torsions. As 
in ~ poly(L-alanine) 9, in o~ PLL also there is a certain 
amount  of  mixing of  the torsional modes with the angle 
bending modes. The peak at 543 cm -l has been assigned 
to the mixture of  (N-C~ C3) bend (junction mode) and 
main-chain deformation. This mode shows maximum 
dispersion (64 cm-1). 

Side-chain modes 
The side-chain [-CH2CH(CH3)2] of PLL consists of a 

CH2 attached to a gem dimethyl group. Pure side-chain 
modes are given in Table 3. The CH 2 scissoring mode 

l calculted at 1444 cm corresponds to the observed band 
at 1441 cm -~ in PLL and at 1453cm -1 in poly(7-benzyl- 
L-glutamate) 17. 

The peaks at 1334, 1318 and 1299cm -1 have been 
assigned to (C7 HT) bend, ( C a - H e 0  bend and amide III 
(backbone mode) respectively. With increase in /5 the 
contribution of (C7-H7)  and (Cc~-Hc 0 bend decrease in 
1334cm -1 and 1 1318 cm mode respectively and the 
latter starts mixing with the amide III. A repulsion takes 
place between 1334 and 1318cm 1 modes in the 
neighbourhood of the helix angle and at the point of  
inflection there is a sudden jump in the density-of-states. 

l The observed band at 1172cm- has been tentatively 
assigned to rocking of CH 3 group by Koenig and 
Sutton 17, but according to our normal mode calculations 
this mode is a mixture of (Cc~-Ho 0 bend (40%) and CH2 
wag (25%). This assignment is further supported by the 
fact that in poly(7-benzyl-L-glutamate), which does not 
have any methyl group, the observed Raman band at 
1183cm -l has been assigned to CH2 wag 17. The CH 2 
rocking mode is assigned to the peak at 875cm -1, in 
accordance with the assignment of Koenig and Sutton 17. 
All pure side-chain modes are non-dispersive. 

The modes calculated at 1130 and 1093cm- (/5 = 0) 
correspond to the observed peaks at 1129 and 1099 cm i. 
They contain a mixture of  side-chain CH2 twist and 
skeletal (N Ca) stretch. The l l 30cm -1 mode is non- 
dispersive. At/5 = 0 it has 34% contribution from CH 2 
twist, and as ~5 increases the contribution of (N Ca) 
stretch decreases and that of CH2 twist increases. The 
1099cm -1 mode has 13% contribution from CH2 twist 
(at/5 = 0) and shows the reverse behaviour later on. The 
mode is dispersive, and with increase in/5 the contribu- 
tion of  (N C~) stretch increases and that of  CH2 twist 
decreases. The modes at 948 and 1038 cm -1 (at/5 = 0) are 
mixtures of  CH 3 rock and side-chain (C-C)  stretch. The 
1038cm -l  mode is non-dispersive, and has very little 
contribution from side-chain (C/3-C7) stretch. The 
948cm -1 mode has 47% contribution from side-chain 
(Ca-C/3) stretch (at /5 = 0). In the 948cm -1 mode the 
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Figure 5 (a) Dispersion curves of poly(c-leucine) below 500 cm -1 . (b) 
Density-of-states g (u )  below 500 cm-I 

contribution of (Cc~-C/3) stretch decreases and those of 
CH 3 rock, (C7-C/52) and (C'y-C/51) stretches increase 
with increase in t5, the frequency also increases with/5, 
and in the neighbourhood of the helix an~le (/5 = ~) it 
exchanges its character with the 977 cm " m o d e  (CH3 
rock at /5 = 0) which belongs to the same symmetry 
species 27. For  /5 > ~ the 948 cm -1 mode becomes non- 

1 dispersive and the 977 cm- mode is repelled upwards. 

Specific heat 
Recently heat capacity measurements for a series of 

poly(amino acids) have been reported by Roles et al.14'15. 
Their approach basically involves separating vibrational 
spectra into group and skeletal spectra and obtaining the 
number of vibrators for each case. These are obtained 
from the dispersion curves and spectra of  polymers 
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interactions.  They can affect the force constants  but  the 
assignments  do not  appear  to be disturbed,  as indicated 
by our  pre l iminary studies on inelastic neu t ron  spectra of 
PLL. At best, some of the low frequency modes will 
appear  as crystal field splittings at the zone centre or zone 
b o u n d a r y  depending on the symmetry dependent  selec- 
t ion rules. Thus  in spite of several l imitat ions involved in 
the calculat ion of specific heat, the present work does 
provide a good starting point  for further basic studies on 
the rmodynamic  behaviour  of polypeptides and  proteins 
which go into well-defined conformat ions .  
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having the same skeletal s tructure (e.g. poly(L-glycine) 
and  a poly(L-alanine) for poly(L-leucine)). As remarked 
earlier, this approach  has its own l imitat ions especially 
when the backbone and side-chain modes are very mixed. 
This is very true in the case of poly(L-leucine) below 
1200 cm - l  . The density-of-states are shown in Figures 3b, 
4b and 5b. Modes which are purely skeletal, purely side- 
chain and a mixture of these two are given in Tables 2, 3 
and 4 respectively. Their contr ibut ions to the heat capa- 
cities are shown in Figure 6 in the temperature range 220-  
390 K. Total  heat capacity is also shown in Figure 6 and 
the s~mbol • represents the experimental data of Roles 
et al. s. The calculations are in very good agreement with 
the experimental measurements  except in the region 300-  
330 K wherein experimental data show a bump. Although 
not  explicitly mentioned,  this bump  could be due to some 
artifacts in experiments, such as the presence of moisture. 
It  should disappear on repeating the measurements.  The 
presence of any glass type transit ion is also not  reported. 
The fact that our  methodology gives better agreement with 
experimental data is substantiated by the root mean  square 
deviation value which is 0.83% as compared with 1.09% of 
Roles et al. 15. 

The con t r ibu t ion  from the lattice modes is b o u n d  to 
make an appreciable difference to the specific heat 
because of its sensitivity to these modes. However,  so 
far we have solved the problem only for a one- 
d imens ional  uni t  cell. The calculat ion for dispersion 
curves of a three-dimension (30) uni t  cell is extremely 
difficult. In te rchain  modes involving hindered trans- 
latory and  ro ta tory  mo t ion  will appear  and the total 
n u m b e r  of  modes will depend on the contents  of the uni t  
cell. For  example, in PLL even if we assume a m i n i m u m  
of  two chains in the 3D uni t  cell then there would be 190 
a toms leading to a matr ix  of  570 × 570. It would br ing in 
an enormous  n u m b e r  of interact ions and  make the 
problem almost  intractable.  The interchain interact ions 
will cont r ibute  to lower frequencies. They are generally 
of the same order of magn i tude  as the weaker in t rachain  
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