

Phonons and heat capacity of poly(L-leucine)

Seema Srivastava, Poonam Tandon, V. D. Gupta* and Shantanu Rastogi

Physics Department, Lucknow University, Lucknow 226 007, India (Received 7 April 1995; revised 15 January 1996)

Poly(L-leucine) is one of the poly(amino acids) having a bulky hydrophobic side chain. For want of full phonon dispersion curves and density-of-states on this biopolymer Roles *et al.* have interpreted their heat capacity data in a limited way. In the present paper, we report the Fourier transform infra-red (FTi.r.) spectra and an analysis of the normal modes and their dispersion based on the calculations for an infinite chain and Urey Bradley force field with intrachain interactions only. The results thus obtained agree well with our FTi.r. spectra and the Raman frequencies reported by Koenig *et al.* Several earlier assignments have been revised. A special feature of some dispersion curves is their tendency to bunch in the neighbourhood of the helix angle. This has been attributed to the presence of strong intramolecular coupling between different types of motions. Repulsion between the dispersion curves is also observed. The heat capacity obtained from the dispersion curves via density-of-states is in very good agreement with the experimental measurements beyond 220 K. It is observed that the main contribution to heat capacity comes from the modes involving the coupling of the backbone skeletal and side-chain motions. Copyright © 1996 Elsevier Science Ltd.

(Keywords: conformation; phonon dispersion; α -helix)

INTRODUCTION

In an earlier publication the authors have reported a study of phonon dispersion and heat capacity in $poly(\alpha$ aminoisobutyric acid)¹. In continuation of our work on vibrational dynamics of biopolymeric systems having α , β , ω and 3_{10} helical conformation¹⁻¹¹, we report for poly(L-leucine) (PLL), full dispersion curves, densityof-states and heat capacity data which are found to be in good agreement with the experimental measurements Wunderlich and Bu^{12} , $Bu \ et \ al.^{13}$, Roles and Wunderlich¹⁴ and Roles *et al.*¹⁵ have reported experimental and theoretical studies of heat capacities of a variety of polymeric systems, synthetic as well as biopolymeric. In most cases, their analysis is based on separation of the vibrational spectrum into group and skeletal vibrations. The former are taken from computations fitted to i.r. and Raman data and the latter by using the two-parameter Tarasov model¹² and fitting to low temperature heat capacities. However, in a few cases, where detailed dispersion curves of the vibrational spectrum are available $^{2-6}$, they have been used for obtaining group and skeletal vibrations and the number of vibrators of each type. In some cases, dispersion curves for one polymeric system have been used to obtain the number of vibrators and frequencies of box oscillators for polymers with an identical backbone. This approach is satisfactory when full dispersion curves are not available. However, it has its own limitations, especially when the side-chain and back-bone modes are strongly coupled. Vibrational spectroscopy is an important tool for probing conformation and conformationally sensitive modes of a polymer. In general, the

infra-red absorption, Raman spectra and inelastic neutron scattering from polymeric systems are very complex and cannot be unravelled without the full knowledge of dispersion curves. One cannot appreciate without it the origin of both symmetry dependent and symmetry independent spectral features. Further, the presence of regions of high density-of-states, which appear in all these techniques and play an important role in thermodynamical behaviour, are also dependent on the profile of the dispersion curves. The lack of this information in many polymeric systems has been responsible for incomplete understanding of polymeric spectra. The advent of lasers and fast computers has eased these problems to a large extent. Dispersion curves also provide information on the extent of coupling along the chain together with an understanding of the dependence of the frequency of a given mode upon the sequence length of the ordered conformation. Thus the study of phonon dispersion in polymeric systems continues to be important.

Poly(L-leucine) (*Figure 1*) belongs to the class of poly(amino acids) having bulky hydrophobic sidechains. In solid state PLL adopts an α helical conformation and molecular models demonstrate that the formation of an α helix reduces the side-chain to sidechain steric interference¹⁶. Infra-red and Raman spectroscopic studies of PLL have been reported by Koenig and Sutton¹⁷, Frushour and Koenig¹⁸, Itoh *et al.*¹⁹ and Shotts and Sievers²⁰. Their assignments are both incomplete and based on qualitative considerations. It is, therefore, all the more important to carry out a complete normal mode analysis and their dispersion for PLL. Both the i.r. and Raman frequencies reported by these authors have been compared with our Fourier transform infra-red (*FT*i.r.) spectra and calculated

^{*} To whom correspondence should be addressed

Figure 1 Chemical repeat unit of poly(L-leucine)

frequencies. The second derivative spectra obtained by us provide an edge over others both in assignment and positions. It is through the dispersion curves that one can correlate microscopic behaviour of a crystal with its macroscopic properties such as specific heat.

THEORY AND EXPERIMENT

Calculation of normal modes

The calculation of normal mode frequencies has been carried out according to Wilson's GF Matrix method²¹ as modified by Higgs²² for an infinite chain using Urey Bradley–Shimanouchi force field which takes into account non-bonded interactions. The Wilson GF matrix method consists of writing the inverse kinetic energy matrix *G* and the potential energy matrix *F* in internal coordinates *R*. In the case of an infinite isolated helical polymer, there are an infinite number of internal coordinates which lead to *G* and *F* matrices of infinite order. Due to the screw symmetry of the polymer a transformation similar to that given by Born and Von Karman can be performed which reduces the infinite problem to finite dimensions. The transformation consists of defining a set of symmetry coordinates:

$$S(\delta) = \sum_{s=-\infty}^{\infty} R^{n} \exp(is\delta)$$
(1)

where δ is the vibrational phase difference between the corresponding modes of the adjacent residue units.

The elements of the $G(\delta)$ and $F(\delta)$ matrices have the form:

$$G_{ik}(\delta) = \sum_{s=-\infty}^{\infty} G_{ik}^{s} \exp(is\delta)$$
(2)

$$F_{ik}(\delta) = \sum_{s=-\infty}^{\infty} F_{ik}^{s} \exp(is\delta)$$
(3)

Figure 2 (a) FT i.r. spectra of poly(L-leucine) (1700-450 cm⁻¹). Inset shows the region 3500-2750 cm⁻¹. (b) FT i.r. spectra of poly(L-leucine) (465-150 cm⁻¹)

The vibrational secular equation which gives normal mode frequencies and their dispersion as a function of phase angles has the form:

$$|G(\delta)F(\delta) - \lambda(\delta)I| = 0, \quad 0 \le \delta \le \pi$$
(4)

The vibration frequencies $\nu(\delta)$ (in cm⁻¹) are related to eigenvalues $\lambda(\delta)$ by the following relation:

$$\lambda(\delta) = 4\pi^2 c^2 \nu^2(\delta) \tag{5}$$

For any given phase difference δ (other than 0 or π), the $G(\delta)$ and $F(\delta)$ matrices are complex. In order to avoid the difficulties involved in handling complex numbers, methods have been devised to transform the complex matrices into equivalent real matrices by constructing suitable linear combinations of coordinates. One method of transforming a complex matrix to its real matrix equivalent is through a similarity transformation. It can be shown that any complex matrix H = M + iNcan be replaced by the real ones:

$$\begin{vmatrix} M & -N \\ N & M \end{vmatrix}$$

In the present case, we can write $G(\delta) = G^{R}(\delta) + iG^{I}(\delta)$ and $F(\delta) = F^{R}(\delta) + iF^{I}(\delta)$, where $G^{R}(\delta)$, $F^{R}(\delta)$, $G^{I}(\delta)$, $F^{I}(\delta)$ are the real and imaginary parts of $G(\delta)$ and $F(\delta)$. The product $H(\delta) = G(\delta)F(\delta)$ becomes:

$$H(\delta) = \begin{vmatrix} G^{\mathsf{R}}(\delta) & -G^{\mathsf{I}}(\delta) \\ G^{\mathsf{I}}(\delta) & G^{\mathsf{R}}(\delta) \end{vmatrix} \times \begin{vmatrix} F^{\mathsf{R}}(\delta) & -F^{\mathsf{I}}(\delta) \\ F^{\mathsf{I}}(\delta) & F^{\mathsf{R}}(\delta) \end{vmatrix}$$
$$= \begin{vmatrix} H^{\mathsf{R}}(\delta) & -H^{\mathsf{I}}(\delta) \\ H^{\mathsf{I}}(\delta) & H^{\mathsf{R}}(\delta) \end{vmatrix}$$
(6)

where

$$H^{\mathbf{R}}(\delta) = G^{\mathbf{R}}(\delta)F^{\mathbf{R}}(\delta) - G^{\mathbf{I}}(\delta)F^{\mathbf{I}}(\delta)$$
(7)

$$H^{\mathbf{I}}(\delta) = G^{\mathbf{R}}(\delta)F^{\mathbf{I}}(\delta) + G^{\mathbf{I}}(\delta)F^{\mathbf{R}}(\delta)$$
(8)

The matrix $H(\delta)$ now has dimensions $2N \times 2N$. The eigenvalues, therefore, occur in pairs of equal values. The difficulty of dealing with complex numbers is thus avoided.

In the present work, the Urey Bradley force field has been used which takes into account both bonded and non-bonded interactions as well as internal torsions. The potential energy can be written as

$$V = \sum_{m,j,k} K'_{jk} r_{jk}^{(m)} (\Delta r_{jk}^{(m)}) + K_{jk} (\Delta r_{jk}^{(m)})^2 / 2$$

+
$$\sum_{m,i,j,k} H'_{ijk} r_{ij}^{(m)} r_{jk}^{(m)} (\Delta \alpha_{ijk}^{(m)})$$

+
$$H_{ijk} r_{ij}^{(m)} r_{jk}^{(m)} (\Delta \alpha_{ijk}^{(m)})^2 / 2$$

+
$$\sum_{m,i,j,k} F'_{ik} q_{ik}^{(m)} (\Delta q_{ik}^{(m)}) + F_{ik} (\Delta q_{ik}^{(m)})^2 / 2$$

+
$$\sum_{j} K_j^{\tau} (\Delta \tau_j)^2 + \sum_{j} K_j^{\omega} (\Delta \omega_j)^2$$
(9)

where the symbols have their usual meaning. The primed quantities are introduced as internal tensions. Nonbonded interactions involve attraction and repulsion of atoms due to the overlap of their electron shells. These effects are usually expressed by the 6-exp or 6-12 type potentials. The tension terms are assumed to be all zero.

Table 1 Internal coordinates and Urey Bradley force constants $(md \dot{A})^a$

Internal coordinates	Force constants	Internal coordinates	Force constants
ν (N–C α)	2.850	$\phi(C\alpha - C\beta - C\gamma)$	0.550(0.18)
$\nu (C\alpha - H\alpha)$	4.250	$\phi(C\beta - C\gamma - C\delta_1)$	0.515(0.18)
$\nu(C\alpha - C)$	2.700	$\phi(C\beta - C\gamma - C\delta_2)$	0.515(0.18)
$\nu(C=O)$	8.300	$\phi(C\beta - C\gamma - H\gamma)$	0.523(0.22)
$\nu(C=N)$	6.300	$\phi(C\delta_1 - C\gamma - C\delta_2)$	0.515(0.18)
$\nu(H-N)$	5.390	$\phi(C\delta_1C\gamma - H\gamma)$	0.500(0.22)
$\nu(C\alpha - C\beta)$	2.550	$\phi(C\delta_2 - C\gamma - H\gamma)$	0.500(0.22)
$\nu(\mathbf{H}\beta\beta-\mathbf{C}\beta)$	4.250	$\phi (\mathbf{C}\gamma - \mathbf{C}\delta_1 - \mathbf{H}\delta_1)^b$	0.445(0.21)
$\nu(H\beta\alpha-C\beta)$	4.250	$\phi (\mathbf{C} \gamma - \mathbf{C} \delta_2 - \mathbf{H} \delta_2)^b$	0.445(0.21)
$\nu(C\beta - C\gamma)$	2.300	$\phi(H\delta_1 - C\overline{\delta}_1 - H\overline{\delta}_1)^b$	0.421(0.24)
$\nu(C\gamma - C\delta_2)$	2.120	$\phi(\mathrm{H}\delta_2 ext{-}\mathrm{C}\delta_2 ext{-}\mathrm{H}\delta_2)^b$	0.421(0.24)
$\nu(C\gamma-C\delta_1)$	2.120	$\phi(\mathbf{C}lpha-\mathbf{C}eta-\mathbf{H}etalpha)$	0.360(0.20)
$\nu(C\gamma - H\gamma)$	4.340	$\phi(\mathbf{C}\gamma - \mathbf{C}\beta - \mathbf{H}\beta\beta)$	0.360(0.20)
$\nu (\mathrm{C}\delta_1 - \mathrm{H}\delta_1)^b_{L}$	4.330	$\phi(C\gamma - C\beta - H\beta \alpha)$	0.360(0.20)
$\nu (\mathrm{C}\delta_2 - \mathrm{H}\delta_2)^b$	4.330	$\phi(C\alpha - C\beta - H\beta\beta)$	0.360(0.20)
		$\phi(\mathbf{H}etaeta-\mathbf{C}eta-\mathbf{H}etalpha)$	0.422(0.25)
$\omega(C=O)$	0.540	ϕ (N–C α –H α)	0.320(0.80)
ω (N–H)	0.120	ϕ (N–C α –C β)	0.450(0.50)
		$\phi({ m H}lpha{ m -}{ m C}lpha{ m -}{ m C})$	0.410(0.20)
τ (C–C α)	0.010	$\phi(\mathbf{H} lpha - \mathbf{C} lpha - \mathbf{C} eta)$	0.410(0.20)
$ au(\mathrm{C}lpha ext{-}\mathrm{C}eta)$	0.050	$\phi(ext{C-C}lpha ext{-C}eta)$	0.520(0.18)
$ au(\mathbf{C}eta-\mathbf{C}m{\gamma})$	0.080	ϕ (N–C α –C)	0.130(0.50)
$ au(\mathbf{C}\gamma - \mathbf{C}\delta_1)$	0.016	$\phi(C=N-C\alpha)$	0.530(0.35)
$ au(\mathrm{C}\gamma-\mathrm{C}\delta_2)$	0.016	$\phi(N=C=O)$	0.600(0.90)
$\tau(C=N)$	0.030	$\phi(C=N-H)$	0.200(0.65)
τ (N–C α)	0.010	$\phi(ext{H-N-C}lpha)$	0.427(0.60)
		$\phi(C\alpha - C = O)$	0.230(0.60)
		$\phi(C\alpha - C = N)$	0.210(0.60)

 ${}^{a}\nu,\phi,\omega,\tau$ denote stretch, angle bend, wag and torsion respectively. Stretching force constants between the non-bonded atoms in each angular triplet (gem configuration) are given in parentheses.

^b Because of the indistinguishability of methyl hydrogens each internal coordinate represents three internal coordinates. The total number of internal coordinates is thus equal to $52 + (6 \times 2) = 64$. The number of force constants including the non-bonded ones would thus become $64 + (28 + 2 \times 4) = 100$

Force constant evaluation

The force constants have been obtained by least squares fitting. In order to obtain the 'best fit' with the observed frequencies the following procedure is adopted. Initially approximate force constants for backbone are

Figure 3 (a) Dispersion curves of poly(L-leucine) (1400–900 cm⁻¹). (b) Density-of-states $g(\nu)$ (1400–900 cm⁻¹)

	Obs.				Obs.		C	alcd.	Obs.
Calcd.	FTi.r.	Assignment (% PED at $\delta = 0.0$)		Calcd.	FTi.r.	Assignment (% PED at $\delta = 5\pi/9$)	2)	$\delta=8\pi/9)$	Raman
3316	3313	7) (66)(N H)/7	Amide A)	3316	3313	ν(H–N)(99) (Amid	(e A) 3	316	
1662	1657	ν (C=O)(57) + ν (C=N)(32) ($_{i}$	Amide I)	1663	1657	ν (C=O)(55) + ν (C=N)(33) (Amide	le I) 1-	662	1653
1547	1546	$\phi({ m H~~N~~C}lpha)(42) + \phi({ m C}={ m N~~H})(26)$	()+	1537	1518	ϕ (H N C α)(45) + ϕ (C=N H)(28)+	1	547	1555
		$ u(C=N)(16) + \nu(C\alpha C)(5) $ (<i>i</i>	Amide II)			$\nu(C=N)(12) \tag{Amide}$	le II)		
1302	1299	ν (C=N)(30) + ν (C=O)(19)+		1311	1318	ϕ (N C α H α)(54) + ϕ (H α C α C β)(7)	1	302	1320
		ν (C α C)(12) + ϕ (H N C α)(12)+	t			$\phi(\mathrm{H}\alpha\mathrm{-C}\alpha\mathrm{-C})(7)+\nu(\mathrm{C=N})(5)$			
		$\phi(\mathbf{N}=\mathbf{C}=\mathbf{O})(8)+\nu(\mathbf{N}-\mathbf{C}\alpha)(7) (i$	Amide III)						

transferred from α poly(L-alanine)⁹. Thus starting with the approximate F matrix F_0 and the observed frequencies λ_{obs} (related through a constant), one can solve the secular matrix equation:

$$GF_0 L_0 = L_0 \lambda_0 \tag{10}$$

Let $\Delta \lambda_i = \lambda i_{obs} - \lambda i_0$ in the above equation. It can be shown that in the first order approximation;

$$\Delta \lambda = J \Delta F \tag{11}$$

where J is computed from L_0 . We wish to compute the corrections to F_0 so that the errors $\overline{\Delta\lambda}$ are minimized. We use the theory of least squares and calculate

$$J'P\overline{\Delta\lambda} = (J'PJ)\overline{\Delta F} \tag{12}$$

where P is a weighting matrix and J' is the transposition of J. The solution to this equation is obtained by inverting (J'PJ) to give:

$$\overline{\Delta F} = (J'PJ)^{-1}J'P\overline{\Delta\lambda} \tag{13}$$

If the number of frequencies is greater than the number of F matrix elements, the matrix J'PJ should be nonsingular and we obtain the corrections ΔF which will minimize the sum of the weighted squares of the residuals. If the corrections ΔF are fairly large, the linear relation between force constant and frequency term in the matrix equation (10) breaks down. In such a situation, further refinement using higher order terms in the Taylor's series expansion of $\Delta \lambda_i$ is needed. This procedure has been developed by King *et al.*²³.

The poly(L-leucine) (lot no. 81H5557, DP(vis)242, M_w 274000) was purchased from Sigma Chemicals, USA. The *FT* i.r. spectra (3000–150 cm⁻¹) were recorded in CSI on a Perkin-Elmer 1800 spectrophotometer and are shown in *Figure 2*. Before running the spectra the equipment was well purged with dry nitrogen.

Calculation of heat capacity

One of the important uses of dispersion curves is that the microscopic behaviour of a crystal can be correlated with its macroscopic properties such as heat capacity. For a one-dimensional system the density-of-states function or the frequency distribution function, which expresses the way energy is distributed among the various branches of normal modes in the crystal, is calculated from the relation:

$$g(\nu) = \sum_{j} (\partial \nu_j / \partial \delta)^{-1} | \nu_j(\delta) = \nu$$
(14)

The sum is over all branches *j*. Considering a solid as an assembly of harmonic oscillators, the frequency distribution $g(\nu)$ is equivalent to a partition function. It can be used to compute thermodynamic quantities such as free energy, entropy, heat capacity and enthalpy²⁴. The constant volume heat capacity is obtained using the following relation which is based on Born, Von Karman

Table 3 Pure side-chain modes (all frequencies are in cm^{-1})

Calcd.	Obs.	Assignment (% PED at $\delta = 0.0$)
2963	2960	$\nu(C\alpha-H\alpha)(99)$
2957		$\nu(C\delta_1-H\delta_1)(99)$
2938	2938	$ u(\mathrm{C}\delta_2\mathrm{-H}\delta_2)(98)$
2918	2916	$ u(\mathbf{C}\gamma-\mathbf{H}\gamma)(24)+ u(\mathbf{C}\delta_{1}-\mathbf{H}\delta_{1})(73)$
2917		$\nu(C\delta_1-H\delta_1)(98)$
2915	2918	$ u(\mathbf{C}\gamma-\mathbf{H}\gamma)(65)+ u(\mathbf{C}\delta_{1}-\mathbf{H}\delta_{1})(28)$
2910		$ u(C\delta_2-H\delta_2)(98)$
2910		$ u(\mathrm{C}\delta_2\mathrm{-H}\delta_2)(96)$
2906	2904	$ u(\mathbf{H}eta\alpha - \mathbf{C}eta)(47) + u(\mathbf{H}eta\beta - \mathbf{C}eta)(48)$
2876	2874	$ u(\mathbf{H}etaeta-\mathbf{C}eta)(49)+ u(\mathbf{H}eta\alpha-\mathbf{C}eta)(50)$
1466	1471	$\phi(\mathbf{H}\delta_{1}-\mathbf{C}\delta_{1}-\mathbf{H}\delta_{1})(92)+\phi(\mathbf{C}\gamma-\mathbf{C}\delta_{1}-\mathbf{H}\delta_{1})(6)$
1465		$\phi(\mathbf{H}\delta_1 - \mathbf{C}\delta_1 - \mathbf{H}\delta_1)(94)$
1452	1454	$\phi(\mathrm{H}\delta_2\mathrm{-C}\delta_2\mathrm{-H}\delta_2)(\mathrm{90})+\phi(\mathrm{C}\gamma\mathrm{-C}\delta_2\mathrm{-H}\delta_2)(\mathrm{5})$
1452		$\phi(\mathbf{H}\delta_2-\mathbf{C}\delta_2-\mathbf{H}\delta_2)(93)$
1444	1441	$\phi(Hetalpha-Ceta-Hetaeta)(76)$
1393	1390	$\phi(\mathbf{C}\gamma - \mathbf{C}\delta_1 - \mathbf{H}\delta_1)(49) + \phi(\mathbf{H}\delta_1 - \mathbf{C}\delta_1 - \mathbf{H}\delta_1)(45)$
1380	1370	$\phi(\mathbf{C}\gamma - \mathbf{C}\delta_2 - \mathbf{H}\delta_2)(48) + \phi(\mathbf{H}\delta_2 - \mathbf{C}\delta_2 - \mathbf{H}\delta_2)(45)$
1351	1350	$\phi(C\delta_2-C\gamma-H\gamma)(49)+\phi(H\gamma-C\gamma-C\delta_1)(24)$
1333	1334	$\phi(\mathbf{C}\beta - \mathbf{C}\gamma - \mathbf{H}\gamma)(47) + \phi(\mathbf{H}\gamma - \mathbf{C}\gamma - \mathbf{C}\delta_1(25)$
1038	1040	$\phi(C\gamma - C\delta_1 - H\delta_1)(30) + \phi(C\gamma - C\delta_2 - H\delta_2)(22) + \nu(C\beta - C\gamma)(11) + \nu(C\gamma - C\delta_2)(5) + \phi(C\delta_2 - C\gamma - C\delta_1)(6)$
1014	1020	$\phi(\mathbf{C}\gamma - \mathbf{C}\delta_1 - \mathbf{H}\delta_1)(41) + \phi(\mathbf{C}\gamma - \mathbf{C}\delta_2 - \mathbf{H}\delta_2)(29)$
977	980	$\phi(C\gamma - C\delta_2 - H\delta_2)(28) + \phi(C\gamma - C\delta_1 - H\delta_1)(23) + \nu(C\gamma - C\delta_1)(10) + \nu(C\gamma - C\delta_2)(7) + \phi(C\alpha - C\beta - H\beta\alpha)(6) + \phi(C\alpha - C\beta - H\beta\alpha)(5) + \phi(C\alpha - C\beta - H\beta\alpha)(6) + \phi(C\alpha - H\beta\alpha)(6) + $
931	925	$\phi(\mathbf{C}\gamma \cdot \mathbf{C}\delta_2 - \mathbf{H}\delta_2)(44) + \phi(\mathbf{C}\gamma - \mathbf{C}\delta_1 - \mathbf{H}\delta_1)(38)$
842	833	$\nu(C\beta - C\gamma)(35) + \phi(C\gamma - C\delta_2 - H\delta_2)(25) + \phi(C\gamma - C\delta_1 - H\delta_1)(11) + \nu(C\gamma - C\delta_1)(13)$
830		$\nu(C\gamma - C\delta_2)(30) + \nu(C\gamma - C\delta_1)(20) + \phi(C\gamma - C\delta_1 - H\delta_1)(12) + \phi(H\beta\alpha - C\beta - C\gamma)(7) + \phi(C\gamma - C\delta_2 - H\delta_2)(7) + \tau(C\alpha - C\beta)(6)$
328	323	$\phi(\mathbf{C}\delta_1 - \mathbf{C}\gamma - \mathbf{C}\delta_2)(64) + \phi(\mathbf{C}\beta - \mathbf{C}\gamma - \mathbf{C}\delta_1)(8)$
282	283	$\tau(\mathbf{C}\gamma - \mathbf{C}\delta_2)(49) + \tau(\mathbf{C}\gamma - \mathbf{C}\delta_1)48)$

Table 4	Mixed mod	es (all frequencies are in cm ⁻¹)	ĺ				
	Obs.			Obs.		Calcd.	Obs.
Calcd.	FTi.r.	Asignment (% PED at $\delta = 0.0$)	Caled.	FT i.r.	Assignment (% PED at $\delta = 5\pi/9$)	$(8\pi/9)$	Raman
1317	1318	ϕ (N-Ca Ha)(63) + ϕ (Ha Ca C)(12)	1332	1334	$\phi(C\beta \cdot C\gamma \ H\gamma)(38) + \phi(H\gamma \cdot C\gamma \ C\delta_1)(19) + \phi(N \ C\alpha \ H\alpha)(9)$	1333	1337
1239	1241	$\nu(\mathbf{C}\alpha \ \mathbf{C})(9) + \phi(\mathbf{H}\alpha \ \mathbf{C}\alpha \ \mathbf{C})(9) + \phi(\mathbf{H}\alpha - \mathbf{C}\alpha \ \mathbf{C}\beta)(18) +$	1227	1224	$\nu(\mathbf{C}\alpha \ \mathbf{C}\beta)(16) + \phi(\mathbf{H}\alpha \ \mathbf{C}\alpha - \mathbf{C}\beta)(15) + \nu(\mathbf{C}\beta \ \mathbf{C}\gamma)(9) + \rho(\mathbf{C}\alpha \ \mathbf{C}\beta)(15) + \rho(\mathbf{C}\beta \ \mathbf{C}\gamma)(9) + \rho(\mathbf{C}\beta \ \mathbf{C}\gamma)(0) + \rho(\mathbf{C}\beta \ \mathbf{C}\gamma)(0) + \rho(\mathbf{C}\beta \ \mathbf{C}\gamma)(0) + \rho(\mathbf{C}\beta \ \mathbf{C}\gamma)(0) + \rho(\mathbf{C}\beta \ \mathbf{C}\gamma)(\mathbf{C}\gamma)$	1223	1221
		$\nu(\mathbf{C}\alpha \ \mathbf{C}\beta)(16) + \nu(\mathbf{C}\beta \ \mathbf{C}\gamma)(8) + \phi(\mathbf{C}\alpha \ \mathbf{C}\beta \ \mathbf{H}\beta\beta)(7) +$			$\phi(\mathrm{H}\alpha-\mathrm{C}\alpha \operatorname{Cl})(9) + \phi(\mathrm{C}\alpha \operatorname{C}\beta \operatorname{H}\beta\alpha)(8) + \phi(\mathrm{H}\beta\beta-\mathrm{C}\beta \operatorname{C}\gamma)(8) + \phi(\mathrm{H}\beta\beta-\mathrm{C}\beta \operatorname{C}\gamma)(8) + \phi(\mathrm{H}\beta\beta-\mathrm{C}\beta \operatorname{C}\gamma)(8) + \phi(\mathrm{C}\beta\beta-\mathrm{C}\beta \operatorname{C}\gamma)(8) + \phi(\mathrm{C}\beta\beta-\mathrm{C}\beta)(8) + \phi(\mathrm{C}\beta)(8) + \phi(\mathrm{C}\beta)(8) $		
		$\phi(H\beta\beta - C\beta \cdot C\gamma)(7) + \phi(C\alpha \cdot C\beta \cdot H\beta\alpha)(6)$			$\phi(C\alpha - C\beta + \beta\beta\beta)(6) + \phi(H\beta\alpha - C\beta - C\gamma)(2)$	2711	(<u></u>
1166	1172	$\phi(H\alpha \ C\alpha \ C\beta)(22) + \phi(H\alpha - C\alpha \ C)(19) +$	1165	1172	$\phi(H\alpha \ C\alpha \ C\beta)(23) + \phi(H\alpha - C\alpha \ C)(19) + \phi(H\beta\alpha - C\beta \ C\gamma)(15) +$	C011	11/3
		$\phi(\mathrm{H}etalpha~\mathrm{C}eta~\mathrm{C}\gamma)(16)+\phi(\mathrm{C}lpha\mathrm{\cdot}\mathrm{C}eta~\mathrm{H}etalpha)(10)+$			$\phi(\mathrm{C}\alpha\text{-}\mathrm{C}\beta\ \mathrm{H}\beta\alpha)(10) + \phi(\mathrm{C}\alpha\ \mathrm{C}\beta\ \mathrm{H}\beta\beta)(8) + \nu(\mathrm{C}\beta\ \mathrm{C}\gamma)(6) +$		
		$\phi(\mathbf{C}\alpha \cdot \mathbf{C}\beta - \mathbf{H}\beta\beta)(8) + \nu(\mathbf{C}\beta \cdot \mathbf{C}\gamma)(7) + \phi(\mathbf{H}\beta\beta \cdot \mathbf{C}\beta - \mathbf{C}\gamma)(6)$			$\phi(H\beta\beta \ C\beta \ C\gamma)(6)$		
1130	1130	$\nu(\mathbf{N} \ \mathbf{C}\alpha)(26) + \nu(\mathbf{C}\alpha \ \mathbf{C})(5) + \phi(\mathbf{C}\alpha - \mathbf{C}\beta - \mathbf{H}\beta\alpha)(15) +$	1130	1130	$\nu(N\ C\alpha)(20) + \phi(C\alpha\ C\beta-H\beta\beta)(19) + \phi(C\alpha\ C\beta-H\beta\alpha)(16) +$	1131	1131
		$\phi(\mathbf{C}\alpha \ \mathbf{C}\beta \ \mathbf{H}\beta\beta)(15) + \phi(\mathbf{H}\beta\alpha \ \mathbf{C}\beta \ \mathbf{C}\gamma)(9) + \phi(\mathbf{H}\beta\beta \ \mathbf{C}\beta - \mathbf{C}\gamma)(5)$			$\phi(\mathrm{H}\beta\beta-\mathrm{C}\beta-\mathrm{C}\gamma)(9)+\phi(\mathrm{H}\beta\alpha-\mathrm{C}\beta-\mathrm{C}\gamma)(9)$		
1093	1099	$\nu(\mathbf{N} \ \mathbf{C}\alpha)(32) + \nu(\mathbf{C}\alpha \ \mathbf{C})(12) + \phi(\mathbf{H}\beta\beta - \mathbf{C}\beta \ \mathbf{C}\gamma)(13) +$	1080	1076	$\nu(\mathrm{N}\cdot\mathrm{C}\alpha)(38) + \phi(\mathrm{H}\beta\beta\cdot\mathrm{C}\beta\mathrm{-C}\gamma(10) + \nu(\mathrm{C}\alpha\cdot\mathrm{C})(6) +$	1071	1051
		$\phi(\mathbf{H}eta \mathbf{\alpha} \ \mathbf{C}eta \ \mathbf{C}\gamma)(6)$			$\phi(Heta \alpha \ Ceta - C\gamma)(7)$		
948	943	$\nu(\mathbf{C}\alpha \cdot \mathbf{C})(5) + \phi(\mathbf{H}\alpha - \mathbf{C}\alpha \cdot \mathbf{C}\beta)(8) + \nu(\mathbf{C}\alpha \cdot \mathbf{C}\beta)(47) +$	696	096	$\nu(\operatorname{C}\alpha\ \operatorname{C}\beta)(17)+\phi(\operatorname{C}\gamma\ \operatorname{C}\delta_2\ \operatorname{H}\delta_2)(12)+$	973	976
		$\phi(\mathrm{C}\gamma~\mathrm{C}\delta_2~\mathrm{H}\delta_2)(5)$			$\phi(\mathrm{C}\gamma~\mathrm{C}\delta_1~\mathrm{H}\delta_1)(14)+\nu(\mathrm{C}lpha-\mathrm{C})(7)$		
902	903	$ u(C\alpha \ C)(21) + \nu(C=O)(6) + \phi(N=C=O)(9) + \nu(C=O)(6) + \nu(C\alpha \ C)(21) + \nu(C=O)(6) + \nu(C\alpha \ C)(21) + \nu(C=O)(6) + \nu$	896	668	$\nu(\mathrm{C}\alpha\mathrm{-C})(16) + \nu(\mathrm{C}\alpha \ \mathrm{C}\beta)(13) + \phi(\mathrm{C}\gamma \ \mathrm{C}\delta_{2}\mathrm{-H}\delta_{2})(7) +$	893	880
		$ u(\mathbf{C}=\mathbf{N})(6) + \phi(\mathbf{C}=\mathbf{N} \ \mathbf{C}\alpha)(6) + \phi(\mathbf{H}\alpha-\mathbf{C}\alpha-\mathbf{C})(5) + u(\mathbf{C}=\mathbf{N})(6) + \phi(\mathbf{C}=\mathbf{N} \ \mathbf{C}\alpha)(6) + \phi(\mathbf{C}=\mathbf{N})(6) + \phi(\mathbf{C}=\mathbf{N})(\mathbf{C})(6) + \phi(\mathbf{C}=\mathbf{N})(\mathbf{C})(\mathbf{C}) + \phi(\mathbf{C}=\mathbf{N})(\mathbf{C})(\mathbf{C})(\mathbf{C}) + \phi(\mathbf{C}=\mathbf{N})(\mathbf{C})(\mathbf{C})(\mathbf{C}) + \phi(\mathbf{C}=\mathbf{N})(\mathbf{C})(\mathbf{C})(\mathbf{C})(\mathbf{C}) + \phi(\mathbf{C}=\mathbf{N})(\mathbf{C})(\mathbf{C})(\mathbf{C})(\mathbf{C}) + \phi(\mathbf{C}=\mathbf{N})(\mathbf{C})(\mathbf{C})(\mathbf{C})(\mathbf{C})(\mathbf{C})$			$\phi(\mathrm{H}eta lpha \ \mathrm{C}eta \ \mathrm{C}\gamma)(6) + \phi(\mathrm{C}\gamma^{-}\mathrm{C}\delta_{1}^{-}\mathrm{H}\delta_{1})(7)$		
		$\phi(\mathbf{C}\gamma \ \mathbf{C}\delta_2 \ \mathbf{H}\delta_2)(7) + \phi(\mathbf{H}\beta\alpha \cdot \mathbf{C}\beta \cdot \mathbf{C}\gamma)(7) + \phi(\mathbf{C}\gamma \ \mathbf{C}\delta_1 \ \mathbf{H}\delta_2)(6)$					
875	874	$\phi(\mathbf{N}=\mathbf{C}=\mathbf{O})(6) + \phi(\mathbf{C}=\mathbf{N} \ \mathbf{C}\alpha)(6) + \nu(\mathbf{N} \ \mathbf{C}\alpha)(6) + \phi(\mathbf{C}=\mathbf{N} \ \mathbf{C}\alpha)(6) + \rho(\mathbf{N} \ \mathbf{C}\alpha)(6) + \rho(\mathbf{C}=\mathbf{N} \ \mathbf{C}\alpha)(\mathbf{C}\alpha)(6) + \rho(\mathbf{C}=\mathbf{N} \ \mathbf{C}\alpha)($	873	874	$\phi(\mathbf{C}\alpha\cdot\mathbf{C}\beta-H\beta\beta)(10) + \nu(\mathbf{N} \ \mathbf{C}\alpha)(7) + \tau(\mathbf{C}\beta \ \mathbf{C}\gamma)(6) +$	874	869
		$\phi((\mathrm{C}\alpha\text{-}\mathrm{C}\beta\ \mathrm{H}\beta\beta)(9)+\tau(\mathrm{C}\beta\ \mathrm{C}\gamma)(6)+\phi(\mathrm{C}\alpha\text{-}\mathrm{C}\beta\text{-}\mathrm{H}\beta\alpha)(7)+$			$\phi(\mathbf{C}\alpha \ \mathbf{C}\beta \ \mathbf{H}\beta\alpha)(6) + \nu(\mathbf{C}\alpha - \mathbf{C}\beta)(5) + \nu(\mathbf{C}\gamma \ \mathbf{C}\delta_2)(5) +$		
		$\phi(\mathbf{H}\beta\beta \mathbf{C}\beta \mathbf{C}\gamma)(5) + \phi(\mathbf{C}\gamma \mathbf{C}\delta_1 - \mathbf{H}\delta_1)(5) + \phi(\mathbf{C}\gamma \mathbf{C}\delta_2 \mathbf{H}\delta_2)(5)$			$\phi(\mathrm{C}\gamma~\mathrm{C}\delta_{2}\mathrm{-H}\delta_{2})(5)+\phi(\mathrm{C}\gamma~\mathrm{C}\delta_{1}~\mathrm{H}\delta_{1})(5)$		
734	726	$\omega(C=O)(35) + \omega(N \cdot H)(25) + \nu(C\gamma \ C\delta_1)(9) + \nu(C\gamma \ C\delta_2)(5)$	751	756	$\omega(\text{C=O})(35) + \omega(\text{N} \text{ H})(24) + \nu(\text{C}\alpha-\text{C}\beta)(8)$	752	745
700	703	$\omega(N H)(13) + \nu(C\gamma C\delta_2)(20) + \nu(C\beta - C\gamma)(19) + \nu(C\gamma C\delta_1)(14)$	669	703	$\nu(C\gamma \ C\delta_2)(25) + \nu(C\gamma \ C\delta_1)(23) + \nu(C\beta \ C\gamma)(20) + \omega(N \ H)(6)$	702	706
647	656	$\omega(\text{C=O})(26) + \phi(\text{N} \cdot \text{C}\alpha\text{-C})(12) + \phi(\text{C}\alpha \cdot \text{C}\beta \cdot \text{C}\gamma)(8)$	625	633	$\phi(N=C=O)(24) + \omega(C=O)(10) + \phi(C\alphaC\betaC\gamma)(6) +$	637	I
		(Amide VI)			$\nu(\mathbf{N} \ \mathbf{C}\alpha)(5) + \phi(\mathbf{C}\alpha \ \mathbf{C}=\mathbf{O})(5) + \phi(\mathbf{C}\alpha \cdot \mathbf{C}=\mathbf{N})(5) +$		
					$\phi(C=N \ C\alpha)(6) + \omega(N-H)(6)$		
592	587	ω (N H)(21) + τ (C=N)(14) + ω (C=O)(11) + ν (N C α)(6)+	603	614	$\omega(N H)(27) + \omega(C=O)(25) + \tau(C=N)(12) + \tau(N C\alpha)(12)$	583	583
		$\tau(N \ C\alpha)(11) + \phi(N=O=O)(6) + \phi(C-C\alpha-C\beta)(5)$ (A mide V + A mide IV)					

9	5 448	-	- 2	-		-			۱ ۲		
48	4	37	30	26(25	15(13(105	9	58	¥
$\begin{split} \phi(\mathbf{N} \ \mathbf{C}\alpha \ \mathbf{C}\beta)(15) + \phi(\mathbf{C}\beta \ \mathbf{C}\gamma \ \mathbf{C}\delta_2)(10) + \\ \tau(\mathbf{C}\beta - \mathbf{C}\gamma)(9) + \phi(\mathbf{C}\alpha \ \mathbf{C}=\mathbf{N})(6) + \\ \phi(\mathbf{N}-\mathbf{C}\alpha-\mathbf{H}\alpha)(6) + \phi(\mathbf{C}\alpha-\mathbf{C}\beta-\mathbf{C}\gamma)(6) + \nu(\mathbf{N} \ \mathbf{C}\alpha)(5) \end{split}$	$\begin{split} \phi(C\beta \ C\gamma \ C\delta_1))(15) + \phi(C\alpha - C\beta - C\gamma)(8) + \nu(C\alpha - C)(7) + \\ \nu((C\alpha \ C\beta)(6) + \phi(C\beta - C\gamma - C\delta_2)(7) + \phi(C\delta_2 - C\gamma - H\gamma)(6) + \\ \phi(C\alpha \ C=0)(6) + \phi(C\beta - C\gamma \ H\gamma)(5) \end{split}$	$\phi(C\beta-C\gamma-C\delta_1)(20) + \phi(C\beta-C\gamma-C\delta_2)(16) + \phi(C\alpha C=0)(10) + \phi(C\alpha C=N)(7) + \pi(C\alpha-C\beta)(5)$	$\begin{aligned} \tau(C\gamma-C\delta_2)(13) + \phi(C=N \ C\alpha)(11) + \tau(C\gamma \ C\delta_1)(11) + \phi(N-C\alpha-C)(10) + \phi(N-C=O)(8) + \phi(C\alpha \ C=O)(7) + \phi(C-C\alpha \ C\beta)(6) \end{aligned}$	$\tau(\mathrm{C}\gamma\mathrm{C}\delta_2)(37)+\tau(\mathrm{C}\gamma\mathrm{C}\delta_1)(33)$	$\phi(\mathbf{N} \ \mathbf{C}\alpha \ \mathbf{C}\beta)(23) + \phi(\mathbf{C}\beta - \mathbf{C}\gamma - \mathbf{C}\delta_2)(22) + \phi(\mathbf{C}\alpha \ \mathbf{C}=\mathbf{N})(7) + \phi(\mathbf{C}\alpha \ \mathbf{C}=\mathbf{O})(5) + \phi(\mathbf{N} - \mathbf{C}\alpha \ \mathbf{C})(6)$	$\begin{aligned} \tau(C\beta \ \ C\gamma)(17) + \tau(C\alpha\text{-}C\beta)(8) + \phi(C\text{=}N\text{-}C\alpha)(9) + \\ \tau(C\text{=}N)(7) + \tau(C\text{-}C\alpha)(7) + \phi(C\beta\text{-}C\gamma\text{-}C\delta_2)(6) \end{aligned}$	$\phi(\mathbf{C}\alpha^{-}\mathbf{C}\beta^{-}\mathbf{C}\gamma)(24) + \phi(\mathbf{C}\beta \ \mathbf{C}\gamma \ \mathbf{C}\delta_{1})(14) + \tau(\mathbf{C}\beta \ \mathbf{C}\gamma)(6)$	$\begin{aligned} \phi(\text{C}-\text{C}\alpha-\text{C}\beta)(26) + \phi(\text{N}\cdot\text{C}\alpha\cdot\text{C})(9) + \phi(\text{C}=\text{N}-\text{C}\alpha)(6) + \\ \tau(\text{C}-\text{C}\alpha)(6) + \tau(\text{C}\beta-\text{C}\gamma)(7) + \omega(\text{C}=\text{O})(5) \end{aligned}$	$\begin{split} \phi(\mathbf{N}\text{-}\mathbf{C}\alpha\text{-}\mathbf{C}\beta)(13) + \phi(\mathbf{C}\alpha\text{-}\mathbf{C}\beta\text{-}\mathbf{C}\gamma)(16) + \tau(\mathbf{C}\beta\text{-}\mathbf{C}\gamma)(12) + \\ \tau(\mathbf{C}\text{-}\mathbf{C}\alpha)(11) + \phi(\mathbf{C}\alpha\ \mathbf{C}\beta\ \mathbf{H}\beta\beta)(6) + \tau(\mathbf{C}\alpha\ \mathbf{C}\beta)(5) \end{split}$	$ au(ext{C}lpha ext{-C}eta)(29) + au(ext{N}- ext{C}lpha)(11) + au(ext{C} ext{C}lpha)(29) + au(ext{N} ext{H})(5) + au(ext{N} ext{H})(5)$	$\begin{aligned} \tau(\text{C}\alpha-\text{C}\beta)(14) + \tau(\text{C}=\text{N})(12) + \tau(\text{C} \text{C}\alpha)(10) + \\ \tau(\text{N}-\text{C}\alpha)(9) + \phi(\text{N}-\text{C}\alpha-\text{C}\beta)(8) + \phi(\text{C}\alpha \cdot \text{C}=\text{N})(8) + \\ \phi(\text{C}-\text{C}\alpha \cdot \text{C}\beta)(6) + \phi(\text{C}\alpha-\text{C}\beta-\text{C}\gamma)(5) \end{aligned}$
506	452	368	317	271	246	171	144	104	ł	65	I
501	438	372	310	271	240	165	136	109	87	60	40
$\begin{split} \phi(\mathbf{C}\alpha-\mathbf{C}=\mathbf{N})(16) + \phi(\mathbf{C}\alpha-\mathbf{C}=\mathbf{O})(13) + \phi(\mathbf{N}\cdot\mathbf{C}\alpha\cdot\mathbf{H}\alpha)(5) + \\ \phi(\mathbf{N}\cdot\mathbf{C}\alpha\cdot\mathbf{C}\beta)(19) + \tau(\mathbf{C}\beta-\mathbf{C}\gamma)(7) + \phi(\mathbf{C}\alpha-\mathbf{C}\beta-\mathbf{C}\gamma)(6) + \\ \phi(\mathbf{C}\beta\cdot\mathbf{C}\gamma\cdot\mathbf{C}\delta_2)(5) \end{split}$	$\begin{split} \phi(\mathrm{C}\alpha\mathrm{-}\mathrm{C}=\mathrm{O})(10) + \phi(\mathrm{N}=\mathrm{C}=\mathrm{O})(8) + \nu(\mathrm{C}\alpha \ \mathrm{C})(8) + \\ \nu(\mathrm{C}\alpha \ \mathrm{C}\beta)(8) + \phi(\mathrm{C}\beta\mathrm{-}\mathrm{C}\gamma\mathrm{-}\mathrm{C}\delta_2)(7) + \phi(\mathrm{C}\beta \ \mathrm{C}\gamma \ \mathrm{C}\delta_1)(11) + \\ \phi(\mathrm{C}\beta \ \mathrm{C}\gamma \ \mathrm{H}\gamma)(7) + \phi(\mathrm{C}\delta_2\mathrm{-}\mathrm{C}\gamma\mathrm{-}\mathrm{H}\gamma)(7) + \phi(\mathrm{H}\gamma\mathrm{-}\mathrm{C}\gamma \ \mathrm{C}\delta_1)(7) \end{split}$	$\phi(\mathbf{C}\alpha - \mathbf{C} = \mathbf{O})(9) + (\mathbf{C}\alpha \ \mathbf{C} = \mathbf{N})(5) + \tau(\mathbf{C}\beta - \mathbf{C}\gamma)(8) + \phi(\mathbf{C}\beta - \mathbf{C}\gamma \ \mathbf{C}\delta_1)(26) + \phi(\mathbf{C}\beta \ \mathbf{C}\gamma \ \mathbf{C}\delta_2)(20) + \tau(\mathbf{C}\alpha \ \mathbf{C}\beta)(11)$	$\phi(C=N \ C\alpha)(10) + \phi(N=C=O)(13) + \phi(C\alpha \ C=O)(6) + \phi(C \ C\alpha \ C\beta)(8) + \tau(C\gamma \ C\delta_2)(17) + \tau(C\gamma - C\delta_1)(15)$	$\phi(N=C=O)(5) + \phi(C=N-C\alpha)(6) + \phi(C C\alpha C\beta)(5) + \tau(C\gamma C_{01})(32) + \tau(C\gamma-C\delta_{01})(29)$	$\begin{split} \phi(N-C\alpha-C)(22) &+ \tau(C=N)(11) + \tau(C \ \ C\alpha)(7) + \\ \phi(C=N-C\alpha)(6) + \tau(N-C\alpha)(5) + \phi(C\alpha \ \ C=O)(5) + \\ \phi(C \ \ C\alpha \ \ C\beta)(8) & (Amide \ VII) \end{split}$	$\begin{split} \phi(\mathbf{C}-\mathbf{C}\alpha\cdot\mathbf{C}\beta)(19) + \phi(\mathbf{N}\cdot\mathbf{C}\alpha\cdot\mathbf{C}\beta)(12) + \phi(\mathbf{C}\beta-\mathbf{C}\gamma-\mathbf{C}\delta_2)(15) + \\ \tau(\mathbf{C}\beta-\mathbf{C}\gamma)(7) + \nu(\mathbf{C}\beta-\mathbf{C}\gamma)(5) \end{split}$	$\begin{split} \phi(\mathbf{Ca} \ \ \mathbf{C=N})(9) + (\mathbf{Ca-C\beta-H}\beta a)(6) + \phi(\mathbf{Ca-C\beta} + H\beta \beta)(5) + \\ \phi(\mathbf{C\beta} \ \ \mathbf{C\gamma} \ \ \mathbf{C\delta_2})(8) + \phi(\mathbf{C\beta} \ \ \mathbf{C\gamma} \ \ \mathbf{C\delta_1})(19) + \tau(\mathbf{C\beta-C\gamma})(17) + \\ \tau(\mathbf{Ca-C\beta})(5) \end{split}$	$\phi(C=N \ C\alpha)(5) + \phi(C-C\alpha - C\beta)(14) + \phi(C\alpha \ C\beta \ C\gamma)(40)$	$\begin{aligned} \tau(\text{C-}\text{C}\alpha)(11) + \phi(\text{C}=\text{N} \ \text{C}\alpha)(6) + \phi(\text{N} \cdot \text{C}\alpha \ \text{C}\beta)(17) + \\ \tau(\text{C}\beta \ \text{C}\gamma)(25) + \tau(\text{C}\alpha-\text{C}\beta)(15) \end{aligned}$	$\tau(\mathbf{C} \ \mathbf{C}\alpha)(26) + \tau(\mathbf{C}=\mathbf{N})(6) + \tau(\mathbf{N}-\mathbf{C}\alpha)(23) + \phi(\mathbf{N} \ \mathbf{C}\alpha-\mathbf{C})(9) + \phi(\mathbf{N} \ \mathbf{C}\alpha \ \mathbf{C}\beta)(9) + \phi(\mathbf{C}\alpha \ \mathbf{C}\beta \ \mathbf{C}\gamma)(8)$	$\phi(\mathbf{C}\alpha \ \mathbf{C}=\mathbf{N})(13) + \phi(\mathbf{H}\alpha-\mathbf{C}\alpha-\mathbf{C})(7) + \phi(\mathbf{C}=\mathbf{N} \ \mathbf{C}\alpha)(6) + \phi(\mathbf{N} \ \mathbf{C}\alpha \ \mathbf{C}\beta)(8) + \tau(\mathbf{C}\alpha-\mathbf{C}\beta)(34)$
543	410	399	302	271	227	189	144	I	I	65	I
549	412	388	300	268	217	195	148	98	62	63	39

and Debye's approach:

$$C_{\rm v} = \sum_{j} g(\nu_j) k N_{\rm A} (h\nu_j/kT)^2 \frac{\exp(h\nu_j/kT)}{\left[\exp(h\nu_j/kT) - 1\right]^2}$$
(15)

with

$$\int g(\nu_j) \mathrm{d}\nu_j = 1$$

The constant volume heat capacity C_v , given by equation (15) is converted into constant pressure heat capacity C_p using the Nernst–Lindemann approximation²⁵:

$$C_{\rm p} - C_{\rm v} = 3RA_0 (C_{\rm p}^2 T / C_{\rm v} T_{\rm m}^0)$$
(16)

where A_0 is a constant often of a universal value $[3.9 \times 10^{-3} \text{ K mol J}^{-1}]$, and T_m^0 is the estimated equilibrium melting temperature, which is taken to be 573 K¹⁵. Equation (16) has been tested for several biopolymers with side groups ranging from hydrogen in polyglycine to $-CH_2-C_6H_4-OH$ in poly(L-tyrosine).

RESULTS AND DISCUSSION

Poly(L-leucine) in α helical form has a factor group which is isomorphous with the C_{18} point group. There are 19 atoms per residue unit which give rise to 57 dispersion curves. The force constants (100) which gave best fit to the experimental data along with the internal coordinates (64) are given in Table 1. The number of normal modes is always less than the number of internal coordinates because of several redundancies. The significant contribution from a force constant is taken to be 5%. Thus a 'pure' backbone mode in general would involve small but appreciable motion in the side-chains. The vibrational frequencies were calculated for values of δ ranging from 0 to π in steps of 0.05 π . Assuming that ψ is the angle of rotation about the helix axis which separates the adjacent units, the modes corresponding to $\delta = 0$ (A species) and ψ (E₁ species) are infra-red as well as Raman active and $\delta = 2\psi$ (E₂ species) gives only Raman active modes. The calculated frequencies at $\delta = 0, 5\pi/9$ and $10\pi/9$ are compared with the observed ones. These modes are shown by the points of intersection of the vertical lines with the dispersion curves. The modes at $\delta = 10\pi/9$ are identical with the modes at $8\pi/9$. Considering the one-dimensional unit cell, it has 19×5 atoms and $(95 \times 3 - 4) = 281$ normal modes which are distributed in various symmetry species as 55(A)+ $56 \times 2(E_1) + 57 \times 2(E_2)$. The E species are doubly degenerate.

Since the modes above 1350 cm^{-1} (except amide II) are non-dispersive, only the modes below this are shown in *Figure 3*. Two lowest lying branches ($\delta = 0$ and $\delta = 5\pi/9$, $\nu = 0$) contain the four zero frequency modes which correspond to the rotation about the helix axis and the translations || and two \perp to the helix axis. The two zeros at $\delta = 0$ correspond to translation along and rotation about the helix axis, while the doubly degenerate zero at $\delta = 5\pi/9$ corresponds to translations in two directions perpendicular to the helical axis. The assignments of modes are made on the basis of potential energy distribution (PED), line intensity, line profile, second derivative spectra and the presence/absence of modes in molecules having atoms placed in similar environments. For the sake of simplicity the modes are discussed under two separate headings, normally backbone modes and side-chain modes.

Backbone modes

The main-chain of PLL consists of amide groups joined together by $C\alpha$ atoms. Modes involving the motions of main-chain atoms $(-C-C\alpha-N-)$ are termed backbone modes. Pure backbone modes are given in Table 2 and pure side-chain modes in Table 3. The modes involving the coupling of backbone and side-chain are given in Table 4. All the amide modes except amide A and amide I are dispersive. A comparison of various amide modes of α PLL and α poly(L-alanine)³ is given in Table 5. Amide I, II and III modes fall nearly in the same region. It is clear that the frequency of amide V mode does not depend solely on main-chain conformation but the side-chain structure also plays an important role in determining the frequency of this mode. The frequency of CO-in-plane-bend (amide IV), CO-out-of-plane bend (amide VI) and C-N torsion (amide VII) are also conformation dependent²⁶. These modes mix strongly and very differently with the side-chain coordinates depending on the structure of the main and side-chains. In the spectra of PLL three bands have been observed at 614, 656 and 703 cm^{-1} . According to Koenig and Sutton¹⁷ these bands are due to amide V in α , disordered and β sheet conformations respectively. The presence of all these modes in the spectra of PLL is said to be indicative of the coexistence of different conformational states. This does not appear to be correct. In α poly(L-alanine)³ the 656 cm⁻¹ band has been assigned to amide VI which is calculated in PLL at 647 cm^{-1} . Amide V is calculated at 592 cm⁻¹ at $\delta = 0$. On increasing the value of δ contribution of C=O wag increases and at the zone boundary it becomes a mixture of amide V and amide VI. The $703 \,\mathrm{cm}^{-1}$ band is a mixture of side-chain stretches and ω (N-H). Our assignments are further supported by the fact that these three bands are observed in poly(L- α amino-n-butyric acid), poly(L-norvaline) and poly(Lnorleucine) in α form and on N-deuteration the 703 and $656\,\mathrm{cm}^{-1}$ bands do not change appreciably in intensities and frequencies¹⁰. Only the band near 610 cm^{-1} shifts to about 450 cm^{-1} because it is due to amide V. One of the interesting features observed in the dispersion curves is the tendency of some curves to bunch or close in near the helix angle. In this range of δ the modes involve strong coupling of different types of atomic motions. This phenomenon is observed in amide V and amide VI. Amide VI mode is most dispersive

Table 5 Comparison of amide modes of poly(L-leucine) and poly(L-alanine) (all frequencies are in cm^{-1})

	Poly(L-	leucine)	Poly(1-alanine)			
	$\delta = 0.0$	$\delta = 5\pi/9$	$\delta = 0.0$	$\delta = 5\pi/9$		
Amide A	3313	3313	3293	3293		
Amide I	1657	1657	1659	1659		
Amide II	1546	1518	1515	1540		
Amide III	1299	1318	1270	1274		
Amide IV	587	633	525	440		
Amide V	587	617	595	610		
Amide VI	656	633	685	656		
Amide VII	227	171	238	190		

 (23 cm^{-1}) . It has 25% contribution from ω (C=O). With increase in δ , the energy of this mode and the contribution of ω (C=O) decrease whereas ϕ (O=C=N) and ω (N–H) start mixing. At $\delta = \psi$ it becomes a mixture of amide IV and V. This characteristic feature has also been noticed in α poly(L-alanine)⁹ and poly(α -aminoisobutyric acid)¹ $(3_{10}$ helix) and can be attributed to strong intramolecular interactions stabilizing the helical structure. The dispersion curves of polyglycine II and other β sheet samples do not show this feature^{4,5}. The observed peak at 227 cm⁻¹ has been assigned to amide VII and this mode has a lower value at $\delta = 5\pi/9$ in comparison to $\delta = 0$. The PED of this mode shows considerable mixing with C α -N and C α -C torsions. As in α poly(L-alanine)⁹, in α PLL also there is a certain amount of mixing of the torsional modes with the angle bending modes. The peak at 543 cm^{-1} has been assigned to the mixture of $(N-C\alpha-C\beta)$ bend (junction mode) and main-chain deformation. This mode shows maximum dispersion (64 cm^{-1}) .

Side-chain modes

The side-chain $[-CH_2CH(CH_3)_2]$ of PLL consists of a CH₂ attached to a gem dimethyl group. Pure side-chain modes are given in *Table 3*. The CH₂ scissoring mode calculted at 1444 cm⁻¹ corresponds to the observed band at 1441 cm⁻¹ in PLL and at 1453 cm⁻¹ in poly(γ -benzyl-L-glutamate)¹⁷.

The peaks at 1334, 1318 and 1299 cm⁻¹ have been assigned to $(C\gamma-H\gamma)$ bend, $(C\alpha-H\alpha)$ bend and amide III (backbone mode) respectively. With increase in δ the contribution of $(C\gamma-H\gamma)$ and $(C\alpha-H\alpha)$ bend decrease in 1334 cm⁻¹ and 1318 cm⁻¹ mode respectively and the latter starts mixing with the amide III. A repulsion takes place between 1334 and 1318 cm⁻¹ modes in the neighbourhood of the helix angle and at the point of inflection there is a sudden jump in the density-of-states.

The observed band at 1172 cm^{-1} has been tentatively assigned to rocking of CH₃ group by Koenig and Sutton¹⁷, but according to our normal mode calculations this mode is a mixture of $(C\alpha - H\alpha)$ bend (40%) and CH₂ wag (25%). This assignment is further supported by the fact that in poly(γ -benzyl-L-glutamate), which does not have any methyl group, the observed Raman band at 1183 cm⁻¹ has been assigned to CH₂ wag¹⁷. The CH₂ rocking mode is assigned to the peak at 875 cm⁻¹, in accordance with the assignment of Koenig and Sutton¹⁷. All pure side-chain modes are non-dispersive.

The modes calculated at 1130 and 1093 cm⁻¹ ($\delta = 0$) correspond to the observed peaks at 1129 and 1099 cm⁻¹. They contain a mixture of side-chain CH₂ twist and skeletal (N-C α) stretch. The 1130 cm⁻¹ mode is nondispersive. At $\delta = 0$ it has 34% contribution from CH₂ twist, and as δ increases the contribution of (N-C α) stretch decreases and that of CH₂ twist increases. The 1099 cm⁻¹ mode has 13% contribution from CH₂ twist (at $\delta = 0$) and shows the reverse behaviour later on. The mode is dispersive, and with increase in δ the contribution of (N-C α) stretch increases and that of CH₂ twist decreases. The modes at 948 and 1038 cm⁻¹ (at $\delta = 0$) are mixtures of CH₃ rock and side-chain (C-C) stretch. The 1038 cm⁻¹ mode is non-dispersive, and has very little contribution from side-chain (C β -C γ) stretch. The 948 cm⁻¹ mode has 47% contribution from side-chain (C α -C β) stretch (at $\delta = 0$). In the 948 cm⁻¹ mode the

Figure 4 (a) Dispersion curves of poly(L-leucine) (950-400 cm⁻¹). (b) Density-of-states $g(\nu)$ (950-400 cm⁻¹)

Figure 5 (a) Dispersion curves of poly(L-leucine) below 500 cm^{-1} . (b) Density-of-states $g(\nu)$ below 500 cm^{-1}

contribution of $(C\alpha - C\beta)$ stretch decreases and those of CH₃ rock, $(C\gamma - C\delta_2)$ and $(C\gamma - C\delta_1)$ stretches increase with increase in δ , the frequency also increases with δ , and in the neighbourhood of the helix angle $(\delta = \psi)$ it exchanges its character with the 977 cm⁻¹ mode (CH₃ rock at $\delta = 0$) which belongs to the same symmetry species²⁷. For $\delta > \psi$ the 948 cm⁻¹ mode becomes non-dispersive and the 977 cm⁻¹ mode is repelled upwards.

Specific heat

Recently heat capacity measurements for a series of poly(amino acids) have been reported by Roles *et al.*^{14,15}. Their approach basically involves separating vibrational spectra into group and skeletal spectra and obtaining the number of vibrators for each case. These are obtained from the dispersion curves and spectra of polymers

Figure 6 Variation of heat capacity C_p with temperature: contributions of backbone modes (- - -), side-chain modes (- - -), mixed modes (- - - -) and total heat capacity (-—). The symbol ▲ represents the experimental data

having the same skeletal structure (e.g. poly(L-glycine) and α poly(L-alanine) for poly(L-leucine)). As remarked earlier, this approach has its own limitations especially when the backbone and side-chain modes are very mixed. This is very true in the case of poly(L-leucine) below 1200 cm^{-1} . The density-of-states are shown in *Figures 3b*, 4b and 5b. Modes which are purely skeletal, purely sidechain and a mixture of these two are given in Tables 2, 3 and 4 respectively. Their contributions to the heat capacities are shown in Figure 6 in the temperature range 220-390 K. Total heat capacity is also shown in Figure 6 and the symbol \blacktriangle represents the experimental data of Roles *et al.*¹⁵. The calculations are in very good agreement with the experimental measurements except in the region 300-330 K wherein experimental data show a bump. Although not explicitly mentioned, this bump could be due to some artifacts in experiments, such as the presence of moisture. It should disappear on repeating the measurements. The presence of any glass type transition is also not reported. The fact that our methodology gives better agreement with experimental data is substantiated by the root mean square deviation value which is 0.83% as compared with 1.09% of Roles et al.¹⁵

The contribution from the lattice modes is bound to make an appreciable difference to the specific heat because of its sensitivity to these modes. However, so far we have solved the problem only for a onedimensional unit cell. The calculation for dispersion curves of a three-dimension (30) unit cell is extremely difficult. Interchain modes involving hindered translatory and rotatory motion will appear and the total number of modes will depend on the contents of the unit cell. For example, in PLL even if we assume a minimum of two chains in the 3D unit cell then there would be 190 atoms leading to a matrix of 570×570 . It would bring in an enormous number of interactions and make the problem almost intractable. The interchain interactions will contribute to lower frequencies. They are generally of the same order of magnitude as the weaker intrachain interactions. They can affect the force constants but the assignments do not appear to be disturbed, as indicated by our preliminary studies on inelastic neutron spectra of PLL. At best, some of the low frequency modes will appear as crystal field splittings at the zone centre or zone boundary depending on the symmetry dependent selection rules. Thus in spite of several limitations involved in the calculation of specific heat, the present work does provide a good starting point for further basic studies on thermodynamic behaviour of polypeptides and proteins which go into well-defined conformations.

ACKNOWLEDGEMENT

Financial assistance to V.D.G. from the Council of Scientific and Industrial Research, New Delhi, under the Emeritus Scientist Scheme is gratefully acknowledged.

REFERENCES

- Prasad, O., Tandon, P., Gupta, V. D., and Rastogi, S. J. Polym. 1 Sci. B, 1996, 34, 1213
- 2 Gupta, V. D., Trevino, S. and Boutin, H. J. Chem. Phys. 1968, 48. 3008
- 3 Krishnan, M. V. and Gupta, V. D. Chem. Phys. Lett. 1970, 6, 231
- Krishnan, M. V. and Gupta, V. D. Chem. Phys. Lett. 1970, 7, 4 285
- 5 Singh, R. D. and Gupta, V. D. Spectrochim. Acta 1971, 27A, 385 Dwivedi, A. M. and Gupta, V. D. Chem. Phys. Lett. 1972, 16, 6 909
- 7 Gupta, V. D., Singh, R. D. and Dwivedi, A. M. Biopolymers 1973, 12, 1377
- 8 Srivastava, R. B. and Gupta, V. D. Biopolymers 1974, 13, 1965 Burman, L., Tandon, P., Gupta, V. D., Rastogi, S., Srivastava, S., and Gupta, G. P. J. Phys. Soc. Japan 1995, 64, 327
- Gupta, A., Tandon, P., Gupta, V. D., Rastogi, S. and Gupta, G. P. J. Phys. Soc. Japan 1995, 64, 315 10
- 11 Burman, L., Tandon, P., Gupta, V. D., Rastogi, S. and Srivastava, S. Polym. J. 1995, 27, 481
- Wunderlich, B and Bu, H. S. Thermochimica Acta 1987, 119, 225 12
- 13 Bu, H. S., Aycock, W., Cheng, S. Z. D. and Wunderlich, B. Polymer 1988, 29, 1486
- 14 Roles, K. A. and Wunderlich, B. Biopolymers 1991, 31, 477
- Roles, K. A., Xenopoulos, A. and Wunderlich, B. Biopolymers 15 1993, 33, 753
- Blout, E. R., Loze, C. de, Bloom, S. M. and Fasman, G. D. 16 J. Am. Chem. Soc. 1960, 82, 3787
- 17 Koenig, J. L. and Sutton, P. L. Biopolymers 1971, 10, 89
- 18 Frushour, B. G. and Koenig, J. L. Biopolymers 1974, 13, 455
- 19 Itoh, K., Shimanouchi, T. and Oya, M. Biopolymers 1969, 7, 649
- 20 Shotts, W. J. and Sievers, A. J. Biopolymers 1974, 13, 2593
- 21 Wilson, E. B., Decuis, J. C. and Cross, P. C. 'Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra", Dover Publications, New York, 1980
- 22
- Higgs, P. W. Proc. Roy. Soc. (London) 1953, A220, 472 King, W. T., Mills, I. M. and Crawford, B. L. J. Chem. Phys. 23 1957, 27, 455, 1957
- Benzinger, T. H. Nature 1971, 229, 100 24
- 25 Pan, R., Verma-Nair, M. and Wunderlich, B. J. Therm. Anal. 1989. 35, 955
- Krimm, S. and Bandekar, J. Adv. Protein Chem. 1986, 38, 181 26
- 27 Bower, D. I. and Maddams, W. F. 'The Vibrational Spectroscopy of Polymers', Cambridge University Press, Cambridge, 1989, pp. 154-156